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LLMs in the spotlight

Impressive, ongoing advances in NLP and AI from large language models!

Google PaLM on BigBench GPT4 on a range of exams



These models are increasingly closed off



Closed models are hard to study and improve

API-only access makes it difficult to do deep analysis or propose improvements

Dual-use / misuse [Kang 2023] Political values / biases [Santurkar 2023]



Reproducible  low-cost environments for LLM experiments

[Ouyang 2020]

• What’s the impact of instruction tuning?
• Does reinforcement learning actually help?
• What changes does RL actually make?

Why is this hard?      Figuring this out (in full) requires replicating instructGPT/chatGPT

Reproducing instruction-following models

• Cost : high cost of human annotation
• Replicability : crowdsourcing doesn’t replicate
• Reference : no known working PPO implementation



Alpaca trio: low-cost experiments for instruction-following

Step 1 (SFT) – Alpaca Step 2 (RLHF) – AlpacaFarm Step 3 (Evals) - AlpacaEval

Simulating annotators (via GPT4) enables fast, low-cost prototyping and R&D of LLMs

[Dubois, Li, Taori, Zhang et al 2023]



Validating the accuracy of simulated annotations

Agreement near human inter-annotator levels Near-perfect rank correlation at the system level

[Dubois, Li, Taori, Zhang et al 2023]



High-performance, reference methods for RLHF

Our findings replicate RLHF’s effectiveness, and these results hold outside the simulator

[Dubois, Li, Taori, Zhang et al 2023]



High-performance, reference methods for RLHF

Our findings replicate RLHF’s effectiveness, and these results hold outside the simulator

[Dubois, Li, Taori, Zhang et al 2023]



AlpacaFarm highlights the complexity of instruction RLHF

AlpacaFarm replicates important, complex phenomena like overoptimization

[Dubois, Li, Taori, Zhang et al 2023]



Beyond this work: LLM driven prototyping lowers the cost of R&D

Studying fine-tuning data Development metrics

Caveat: development and deployment needs more than automated data/evals

Development metrics, synthetic data Crowdsourced data + evaluation Live evaluation



Case study: watermarking LLMs

Watermarking enables tracking of LLM-generated text (see Kirchenbauer et al)

Challenges:

• Watermarks induce distortion (hard sell for LLM vendors)

• Many watermarks highly non-robust (to deletion of a few words, or cropping)



Development of a distortion-free, robust watermark.

In recent work [Kuditipudi et al 2023], we derive a distortion free and robust watermark.

Generate (for each token 𝑦𝑖) 
•    Draw a random sequence 𝜉𝑖 ∈ [0,1], call this the key
•    Sample according to min

𝑖
 − log 𝜉𝑖/𝑝𝑖 (From Aaronson)

Detect
• Find the min-Levenshtein cost with 𝑑 𝑦, 𝜉 = σ𝑖 log(1 − 𝜉𝑖,𝑦𝑖

) 

• Compare vs the min-Levenshtein cost w/ random 𝜉

This is distortion free (i.e. the marginal distribution over 𝜉 is p)

This is robust (i.e. can detect under small Levenshtein edits) 

[Kuditipudi et al 2023]



Watermarks and open models

Open models (and access to logprobs) 
enable watermarking research

Open instruction-tuning models and 
evals lead to new open problems

Distortion-free watermarks are weaker on instruction-tuned models

70.86% 51.2%

Unwatermarked KGW watermark

AlpacaEval Win Rate

Distortion-inducing watermarks lead to major drops in performance

[Kuditipudi et al 2023] [Freeman and Hashimoto, unpublished]



Takeaways

Open source provides important accountability and transparency

LLMs enable new research into instruction-following models

New innovations and interventions based on open LLMs

Open models and trustworthiness

Research on LLMs

Enabling safer and more robust LLMs
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