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LLMs in the spotlight
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Google PaLM on BigBench GPT4 on a range of exams

Impressive, ongoing advances in NLP and Al from large language models!




These models are increasingly closed off

“On the competitive landscape front — it's competitive out there,” said

Sutskever. “GPT-4 is not easy to develop. It took pretty much all of Jan Leike & @ijanleike - Oct 24, 2022

| agree. While OpenAl doesn't like talking about exact model sizes /
parameter counts anymore, documentation should definitely be better.

OpenAl working together for a very long time to produce this thing.
And there are many many companies who want to do the same thing, so

from a competitive side, you can see this as a maturation of the field.”
text-davinci-002 isn't the model from the InstructGPT paper. The closest

to the paper is text-davinciplus-002.
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Closed models are hard to study and improve

Generative models
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Dual-use / misuse [Kang 2023] Political values / biases [Santurkar 2023]

APl-only access makes it difficult to do deep analysis or propose improvements



Reproducible low-cost environments for LLM experiments

Step1 Step 2 Step 3
Collect demonstration data, Collect comparison data, Optimize a policy against
and train a supervised policy. and train a reward model. the reward model using

reinforcement learning.
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[Ouyang 2020]

* What’s the impact of instruction tuning?
* Does reinforcement learning actually help?
* What changes does RL actually make?

Why is this hard?  Figuring this out (in full) requires replicating instructGPT/chatGPT




Alpaca trio: low-cost experiments for instruction-following
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Simulating annotators (via GPT4) enables fast, low-cost prototyping and R&D of LLMs

[Dubois, Li, Taori, Zhang et al 2023]



Validating the accuracy of simulated annotations

:;.EJ ®
-~
= L
S 0.66- - 0
a
s
o A ®
0 0.634 A
g ®
A ®
=
c 0.604 4 o ®
{v]
=
> ®
I057_|| ] | |*||I Ll Ll LA ) ]
10° 10? 102
$/1000 examples
Annotator: e Human per o Trainer p3n e Evaluator p&? e GPT4 pShme
Model: B Human pres & Simulated pgin e GPT4 A ChatGPT & Davinci003

Agreement near human inter-annotator levels

0.8-
_EJ; 0.7_
C 0.6+
fe
g 05'
E 0.4-
S 0.3-
T0.2-

0.1-

Spearman Correlation: 0.98
R? = 0.87

N

0.0

| T | T | T | T
01 02 03 04 05 0.6 0.7 0.8

Simulated Win-rate

Near-perfect rank correlation at the system level

[Dubois, Li, Taori, Zhang et al 2023]



High-performance, reference methods for RLHF

Method Simulated win-rate (%)
GPT-4 79.0+14
ChatGPT 61.44+ 1.7
PPO 46.8 £ 1.8
Best-of-n 45.0 £ 1.7
Expert Iteration 41.9 £ 1.7
SFT 52k (Alpaca 7B) 39.2 4+ 1.7
SFT 10k 36.7 £ 1.7
Binary FeedME 36.6 &= 1.7
Quark 35.6 = 1.7
Binary Reward Conditioning 3244+ 1.6
Davinci001 244+ 1.5
LLaMA 7B 11.3+1.1

Our findings replicate RLHF’s effectiveness, and these results hold outside the simulator

[Dubois, Li, Taori, Zhang et al 2023]



High-performance, reference methods for RLHF

Method Simulated win-rate (%) Human win-rate (%)
GPT-4 79.0+1.4 69.8 & 1.6
ChatGPT 61.44+ 1.7 52.9 £ 1.7
PPO 46.8 £ 1.8 55.1 + 1.7
Best-of-n 45.0 £ 1.7 50.7 = 1.8
Expert Iteration 41.9 £ 1.7 45.7T £ 1.7
SFT 52k (Alpaca 7B) 39.2 4+ 1.7 40.7 £ 1.7
SFT 10k 36.7 £ 1.7 44.3 £ 1.7
Binary FeedME 36.6 &= 1.7 379+ 1.7
Quark 35.6 = 1.7 -
Binary Reward Conditioning 3244+ 1.6 -
Davinci001 24.4 4+ 1.5 325+ 1.6
LLaMA 7B 11.3+1.1 6.5+ 0.9

Our findings replicate RLHF’s effectiveness, and these results hold outside the simulator

[Dubois, Li, Taori, Zhang et al 2023]



Eval win-rate on phuman
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AlpacaFarm highlights the complexity of instruction RLHF
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AlpacaFarm replicates important, complex phenomena like overoptimization

[Dubois, Li, Taori, Zhang et al 2023]



Beyond this work: LLM driven prototyping lowers the cost of R&D

Textbooks Are All You Need ® AlpacaEval : An Automatic
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How Far Can Camels Go? Exploring the State of

Self-Alignment with Instruction Backtranslation
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Studying fine-tuning data Development metrics
Caveat: development and deployment needs more than automated data/evals

Development metrics, synthetic data =— Crowdsourced data + evaluation =——> Live evaluation



Case study: watermarking LLMs
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Watermarking enables tracking of LLM-generated text (see Kirchenbauer et al)

Challenges:
« Watermarks induce distortion (hard sell for LLM vendors)
e Many watermarks highly non-robust (to deletion of a few words, or cropping)



Development of a distortion-free, robust watermark.

In recent work [Kuditipudi et al 2023], we derive a distortion free and robust watermark.

Generate (for each token y;)
* Draw arandom sequence ¢; € [0,1], call this the key
« Sample according to min —log¢; /p; (From Aaronson)
l

This is distortion free (i.e. the marginal distribution over £ is p)

Detect
* Find the min-Levenshtein cost with d(y, ) = ¥;log(1 — &; )

e Compare vs the min-Levenshtein cost w/ random &

This is robust (i.e. can detect under small Levenshtein edits)

[Kuditipudi et al 2023]



Watermarks and open models

Open models (and access to logprobs) Open instruction-tuning models and
enable watermarking research evals lead to new open problems
Distortion-free watermarks are weaker on instruction-tuned models
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[Kuditipudi et al 2023] [Freeman and Hashimoto, unpublished]



Takeaways

Open models and trustworthiness

Open source provides important accountability and transparency

Research on LLMs

LLMs enable new research into instruction-following models

Enabling safer and more robust LLMs

New innovations and interventions based on open LLMs
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